Satisfying assignments of Random Boolean CSP: Clusters and Overlaps
نویسنده
چکیده
The distribution of overlaps of solutions of a random CSP is an indicator of the overall geometry of its solution space. For random k-SAT, nonrigorous methods from Statistical Physics support the validity of the “one step replica symmetry breaking” approach. Some of these predictions were rigorously confirmed in [MMZ05a] [MMZ05b]. There it is proved that the overlap distribution of random k-SAT, k ≥ 9, has discontinuous support. Furthermore, Achlioptas and Ricci-Tersenghi [ART06] proved that, for random k-SAT, k ≥ 8. and constraint densities close enough to the phase transition: – there exists an exponential number of clusters of satisfying assignments. – the distance between satisfying assignments in different clusters is linear. We aim to understand the structural properties of random CSP that lead to solution clustering. To this end, we prove two results on the cluster structure of solutions for binary CSP under the random model from [Mol02]: 1. For all constraint sets S (described in [CD04,Ist05]) s.t. SAT (S) has a sharp threshold and all q ∈ (0, 1], q-overlap-SAT (S) has a sharp threshold (i.e. the first step of the approach in [MMZ05a] works in all nontrivial cases). 2. For any constraint density value c < 1, the set of solutions of a random instance of 2-SAT form, w.h.p., a single cluster. Also, for and any q ∈ (0, 1] such an instance has w.h.p. two satisfying assignment of overlap ∼ q. Thus, as expected from Statistical Physics predictions, the second step of the approach in [MMZ05a] fails for 2-SAT.
منابع مشابه
Satisfying Assignments of Random Boolean Constraint Satisfaction Problems: Clusters and Overlaps
The distribution of overlaps of solutions of a random constraint satisfaction problem (CSP) is an indicator of the overall geometry of its solution space. For random k-SAT, nonrigorous methods from Statistical Physics support the validity of the one step replica symmetry breaking approach. Some of these predictions were rigorously confirmed in [Mézard et al. 2005a] [Mézard et al. 2005b]. There ...
متن کاملTesting Assignments of Boolean CSPs
Given an instance I of a CSP, a tester for I distinguishes assignments satisfying I fromthose which are far from any assignment satisfying I. The efficiency of a tester is measuredby its query complexity, the number of variable assignments queried by the algorithm. In thispaper, we characterize the hardness of testing Boolean CSPs according to the relations usedto form const...
متن کاملThe complexity of counting locally maximal satisfying assignments of Boolean CSPs
We investigate the computational complexity of the problem of counting the locally maximal satisfying assignments of a Constraint Satisfaction Problem (CSP) over the Boolean domain {0, 1}. A satisfying assignment is locally maximal if any new assignment which is obtained from it by changing a 0 to a 1 is unsatisfying. For each constraint language Γ, #LocalMaxCSP(Γ) denotes the problem of counti...
متن کاملAn approximation trichotomy for Boolean #CSP
We give a trichotomy theorem for the complexity of approximately counting the number of satisfying assignments of a Boolean CSP instance. Such problems are parameterised by a constraint language specifying the relations that may be used in constraints. If every relation in the constraint language is affine then the number of satisfying assignments can be exactly counted in polynomial time. Othe...
متن کاملApproximating Partition Functions of Bounded-Degree Boolean Counting Constraint Satisfaction Problems
We study the complexity of approximate counting Constraint Satisfaction Problems (#CSPs) in a bounded degree setting. Specifically, given a Boolean constraint language Γ and a degree bound ∆, we study the complexity of #CSP∆(Γ), which is the problem of counting satisfying assignments to CSP instances with constraints from Γ and whose variables can appear at most ∆ times. Our main result shows t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/cs/0703065 شماره
صفحات -
تاریخ انتشار 2007